Building a
CPAN-Ready
Perl Extension

James E Keenan
(jkeenan@cpan.org)
New Orleans Perlmongers

Friday, December 10, 2004

Preparation

® Perl
® hlxs, perldoc, chan
® Jest:Simple,Test::More
® verify presence: perldoc -1 Test::More

® ExtUtils::ModuleMaker

Preparation (2)

® Automatic installation:

e sudo cpan 1nstall
ExtUtils: :ModuleMaker

® Manual installation:
e perl Makefile.PL
® make
® make test

® sudo make 1nstall

3

Preparation (3)

® |nstallation alternatives:
® ppm
® rpm
® apget

® OnWindows: nmake

Preparation (4)

® Tarballs with code fragments:
® MM-0.02-code-fragments.tar.gz
® MM-0.03-code-fragments.tar.gz
® Place in your working directory

® For now, unzip only MM-0.02

h2xs

® Originally developed to pull C header files
into Perl via “X$§’ glue language

® But often used to prepare modules that
don’t include C code

® h2xs —-AXn My: :Module

h2xs => ‘ugly’

® Have to read man pages to decipher
simplest mode of operation

® Writes an ugly Makefile.PL

@ WriteMakefile (

NAME =>
VERSION FROM =>
PREREQ PM =>

($1 >= 5.005 2
(ABSTRACT FROM

AUTHOR =>

()),
) ;

'My: :Module',
'lib/My/Module.pm',

{}, # e.g., Module::Name => 1.1
Add these new keywords

supported since 5.005

=> 'lib/My/Module.pm',

retrieve abstract from module
'"James E Keenan <jimk@local>")

modulemaker

® Command-line utility included with
Geoff Avery’s ExtUtils::ModuleMaker

@ S modulemaker

® _.then just follow the prompts

modulemaker Summary

® N: Module name
® primary module
® A: Author information
® author’s name
e CPAN ID
® organization
® website

® author’s e-mail address

9

modulemaker Summary @

® |: License
® D: Directives
o C: Compact
® O (default): ../My/Module/Makefile.PL
® |: ../My-Module/Makefile.PL
® N: New
® O: functional

® | (default): object-oriented

|10

modulemaker Summary g

® B: Build system
® ExtUtils::MakeMaker
® Module::Build
® mixed
® G: Generate the module

® Q: Quit modulemaker

Structure of
My::Module

Changes
lib/
o My/

® Module.pm
Makefile.PL
MANIFEST
README
scripts/
t/
® 00| load.t
Todo

12

modulemaker’s
Makefile.PL

WriteMakefile (
NAME =>
VERSION FROM =>
AUTHOR =>
ABSTRACT =>
PREREQ PM =>

'My: :Module',

'lib/My/Module.pm', # finds SVERSION

'"'James E Keenan

L |

{

'"Test::Simple'

by

4

|3

(Jkeenan@cpan.orqg) ',

=> 0.44,

modulemaker’s
Ilb/My/Module bm

[view 1n text editor

modulemaker’s
t/001] load.t

use Test::More tests => 1;
BEGIN { use ok('My::Module'); }

If we had used
Text::Simple

END {print "not ok 1\n" unless S$loaded;}
use Test::Simple tests => 1;

Sloaded = 1;

ok ($loaded) ;

16

|s structure valid?

perl Makefile.PL
make

make test

sudo make 1nstall

make dist

w» W W W A

make clean

Preparing to add
real content

® To preserve what we've already done, we're
going to create a new version: 0.02

® To save time and typing, I've written most
of the new content you'll use tonight

® Unzip MM-0.02-code-fragments.tar.gz

® Copy-and-paste in as directed

Changes

For v0.02, edit changes to provide date and
description of changes being made

S vi Changes

:r changes.0.0Z

lib/My/Module.pm

Update version number inside each .pm file
S vi lib/My/Module.pm
:$s/0.01/0.02/gc

20

What will our
module do!?

For simplicity, let’s do what | did in
List::Compare

Creatively borrow code from the
Perl Cookbook

Put a nice, modular wrapper around it
To start, we'll get the union of two lists

S0, we're ready to start coding, right?

21

Documentation first!

® Specification for functionality

® Will make code and tests easier to write

23

Documentation (1)

S vi lib/My/Module.pm
dd # delete 1st blank line
move down to NAME section
:r f/abstract.0.02 # add abstract
move down to SYNOPSIS

:r f/synopsis.0.02

24

Documentation (2)

move down to DESCRIPTION

:r f/description.0.02

-- save file and make sure we haven'’t
introduced any syntax errors

:wg Or :474

S perl -c lib/My/Module.pm

25

README

S vi README

-- to save time, delete all and replace with
code fragment

:1,sd

:0r f/README.0.02
:wg Or :47

S0, now we're ready to write code, right!

26

Tests next!

® [est-driven development
® Will make code easier to write

® First, write the code that will test
get union ()

28

t/OO I_IOGd.tu)

S vi t/001 load.t

dd # delete 1st blank line

comment out original Test::More line
because we don’t yet know how many tests
we’ll eventually have

:r f/no plan.0.02 # get new
Test::More line and BEGIN block

29

t/00 I_IOGd.t (2)

:r f/setup test 1lists.0.02

:r f/get union tests.0.02

Note use of ‘seen-hash’ to test presence of
elements in a list

:wg Or :44
S perl -c t/001 load.t

S perl t/001 load.t

50, now we're ready to write code, right!?

30

At long last ... code!

S vi lib/My/Module.pm
:r BEGIN.O0.0Z

-- no need for @EXPORT : no subs
exported by default

-- separate line for each sub in
@EXPORT_OK

-- establish one export tag (a11) for
future use

32

get union ()

:r f/get union.0.02

:r f/return true.0.02

-- reposition final °I’ so module returns
true

-r £/BUGS.0.02
-- revise final sections of POD

-- miscellaneous cleanup
S perl -c lib/My/Module.pm

33

w» v W W W W»

make -- test -- install

perl Makefile.PL
make

make test

sudo make 1nstall
make dist

make clean

34

On to v0.03!

® o preserve what we've already done, we're
going to create a new version: 0.03

® Unzip MM-0.03-code-fragments.tar.gz

® Copy-and-paste as needed

35

Building a
CPAN-Ready
Perl Extension:
Bonus Slides

James E Keenan
(jkeenan@cpan.org)
New Orleans Perlmongers

Friday, December 10, 2004

Test::Simple

® Basic utilities for writing tests.

use Test::Simple tests => 1;
ok ($foo eq $bar, 'foo is bar');

® Needs plan showing number of tests to
be run.

37

Test::Simple

® Exports only | function: ok ()

® ok () requires | argument -- the
expression to be tested

® ok () may take optional 2nd argument --
string describing purpose of test

® ok () prints out either "ok" or "not ok"
along with a test number

38

Test::Simple ¢

® ok(get temperature($hell) > 0,
'"Hell not yet frozen over');

@ ok 1 - Hell not yet frozen over

® All tests are run in scalar context.

@ ok(@stuff, 'Have some stuff');
.. will fail if @stuff is empty

39

Test::More

® Yet another framework for writing test
SCripts

® Use it

®@ use Test::More tests =>
SNum Tests;

® oOr
use Test::More gw(no plan);

40

Test::More

or
use Test: :More;
if($70 eg "MacOS') {

plan skip all => 'Test
i1rrelevant on MacOS';

J

else {
plan tests => 42;
}

4]

Test::More s

BEGIN { use ok('Some::Module'); }
ok (Sthis eg $that, Stest name);

is (Sthis, S$that, Stest name) ;
isnt ($this, Sthat, Stest name) ;

like ($this, gr/that/, Stest name);
unlike (Sthis, gr/that/, Stest name);

cmp ok ($this, '==', S$that, S$test name);

can ok (Smodule, @methods);
isa ok ($object, $Sclass);

42

Test::Harness

® Run perl standard test scripts with statistics
use Test::Harness;
runtests (dtest files);

® Used by make test to run either one test

file (test.t) or a subdirectory of test files
(t/*.1).

® Used by prove to run a single test file

43

Test::Harness

® Each individual file relies on Test::Simple,
Test::More or another Test::* module.

® Outputs statistics once all tests are run

® As long as you are using make test or
prove You don't need to know the
workings of Test::Harness -- or even call it

44

Test::Builder

® Backend for building test libraries

® This is what's inside both Test::Simple and
Test::More

® Provides building blocks used to write
other, more specialized test modules

® Unless you want to do that, you don't need
to concern yourself with Test::Builder

45

brove

® Command-line utility now included with
lest::Harness

® Hence, included in Perl 5.8

46

Test:: Tutorial i

® This is probably the first thing you should
read after attending this talk.

@ perldoc Test::Tutorial

47

Building a
CPAN-Ready
Perl Extension

James E Keenan
(jkeenan@cpan.org)
New Orleans Perlmongers
Friday, December 10, 2004

