
POD Translation
by pod2pdf
ajf@afco.demon.co.uk

Repeated-Code-Is-a-Mistake

Title Page Repeated-Code-Is-a-Mistake

03 May 2003 Fly leaf

Table of Contents
Repeated-Code-Is-a-Mistake

Variations on a Theme ... 1
Repeated Code Is a Mistake 1

YAPC::CA 1
Carlton University 1
Ottawa, Ontario 1
Friday, 16 May 2003 1
James E. Keenan 1
http://www.concentric.net/~Jkeen/repeated/ 1
Inspiration 1
Repeated Code Is a Mistake! 1
Locus Classicus 1
Obsession 1
Avoiding Code Duplication as a General Principle of Computing... 1
Mode of Presentation 2

Subroutine as Basic Unit of Reusable Code 2
Rule of Thumb 2
A Database Report Problem 2
Data::Presenter 2
get_data_count() 2
print_data_count() 2
What‘s the diff? 3
First, Design the Interface 3
Then, Design the Engine 3
A Side Benefit from Extracting Repeated Code 4

Data::Presenter version 0.43: 4
Data::Presenter version 0.44: 4

Eliminate Synthetic Variables 4
Two Methods Sharing an Engine 4
The Engine That Powers the Two Methods 4
Wrappers and Engines 5
User-Friendly Wrappers 5
Wrappers Pass Arguments to Engines 5
The Profile Engine (part 1) 6
The Profile Engine (part 2) 6
Engines Can Have Subengines 7
Subengines Deferred 7

From Subroutines to Modules 7
My First Module 7
A Regular Module Exports Its Subroutines 7
Your First Module Won‘t Be Your Greatest 8
My First Object-Oriented Module 8
A Primitive Profiler 8
Suddenly, I Was Teaching Perl! 8
To Find a Recipe, Look in the Cookbook 9
Voila! My First CPAN Distribution 9

Reusing Code via Object Oriented Perl 9
Inheritance in Object Oriented Perl 9

03 May 2003 i

Repeated-Code-Is-a-Mistake Table of Contents

Remember Data::Presenter? 9
Why Subclass at All? 10

&Data::Presenter::new 10
&Data::Presenter::SampleCensus::_init 10

An Inherited Constructor 10
Initializer in the Invoking Subclass 10
Interface Polymorphism 11
Inheritance Polymorphism 11
Another Kind of Polymorphism 11
‘Under-the-hood’ Polymorphism 12
Identically Named Subroutines in Different Invoking Classes 12
‘Under-the-hood’ Polymorphism in List::Compare 12
Different Initializers for Different Numbers of Arguments 12

In Conclusion ... 13
What We‘ve Learned (I) 13
What We‘ve Learned (II) 13
What We‘ve Learned (III) 13
What We‘ve Learned (IV) 13
The End 13

ii 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

Variations on a Theme ...

Repeated Code Is a Mistake
YAPC::CA
Carlton University
Ottawa, Ontario
Friday, 16 May 2003
James E. Keenan
http://www.concentric.net/~Jkeen/repeated/

Inspiration
 From June 2000 to the present, I‘ve attended talks and read articles by Philadelphia Perl master

Mark-Jason Dominus (MJD) (http://perl.plover.com).

 The principal lesson I‘ve drawn from these talks is:

Repeated Code Is a Mistake!

Locus Classicus
In his November 2000 article ‘’Program Repair Shop and Red Flags,‘’ MJD calls repeated code
 the red flag of all red flags: Any time a program does something twice,
 look to see whether you can get away with doing it only once.

He emphasizes the point later:
 The Cardinal Rule of Computer Programming is that if you wrote the
 same code twice, you probably did something wrong. At the very least,
 you may be setting yourself up for a maintenance problem later on
 when someone changes the code in one place and not in another. ...
 Each time you see you have written the same code more than once,
 give serious thought to how you might eliminate all but one instance.

Source: http://www.perl.com/lpt/a/2000/11/repair3.html

Obsession
 Since then, I‘ve become obsessed with eliminating repeated code from my work.

 Today, I will try to lure you into become equally obsessed. I hope you will see that eliminating
repeated code improve‘s your code‘s:

 readability

 maintainability

 reusability

 But first, one more citation from MJD.

Avoiding Code Duplication as a General Principle of Computing Languages
Mark notes in the same article:
 Programming languages are chock-full of features designed to
 prevent code duplication from the very lowest levels (features such
 as $a[3] += $b instead of $a[3] = $a[3] + $b) to the very highest
 (features such as DLLs and pipes). In between are essential
 features such as subroutines and modules.

03 May 2003 1

Repeated-Code-Is-a-Mistake pod2pdf

In this class, we focus on using subroutines and modules to eliminate repeated code.

Mode of Presentation
 You‘ll see examples from my own code as it has evolved over the last three years.

 Warning! Some of the code is not very good.

 But it has gotten better over time, mainly because I‘ve applied what MJD and others drummed into me
at various YAPC conferences.

 Fear not! You, too, can improve your code.

Subroutine as Basic Unit of Reusable Code

Rule of Thumb
Our general rule of thumb:
When you see repeated code, you should sense the opportunity to extract that code and place it in a
subroutine.

A Database Report Problem
Suppose the following:

 You get canned reports from a legacy database system, but you can‘t directly access the database to
compose your own new reports.

 You can, however, save the database reports as plain-text files.

 The reports present data in a row/column or matrix format.

Data::Presenter
 I encountered this problem on my day job over two years ago. I wrote a module called

Data::Presenter to solve this problem.

 It‘s object-oriented. Wow!

 On CPAN: http://search.cpan.org/author/JKEENAN/Data-Presenter-0.62

 But this isn‘t a talk about Data::Presenter.

get_data_count()
Here‘s the original version of a Data::Presenter method which returns the number of data records in the
object.
 sub get_data_count {
 my $self = shift;
 my %data = %$self;
 my $count = 0;
 foreach (keys %data) {
 unless ($reserved{$_}) {
 $count++;
 }
 }
 return $count;
 }

print_data_count()
And here‘s the original version of a similar Data::Presenter method which get the number of data records in
the object and prints it to STDOUT.
 sub print_data_count {
 my $self = shift;

2 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

 my %data = %$self;
 my $count = 0;
 foreach (keys %data) {
 unless ($reserved{$_}) {
 $count++;
 }
 }
 print "Current data count: $count\n";
 }

What‘s the diff?
To compare, get_data_count() and print_data_count(), I first use perltidy to eliminate
variation due to different ways of formatting Perl code.
I then use the Unix utility diff to compare the two subroutines.
The small number of different lines indicates that much of the code is repeated.
 3c3
 < sub get_data_count {

 > sub print_data_count {
 12c12
 < return $count;

 > print "Current data count: $count\n";

I smell a subroutine!

First, Design the Interface
I‘m going to write a subroutine that will replace the repeated code. First, I decide how
get_data_count() and print_data_count() will each call the new subroutine:
 sub get_data_count {
 my $self = shift;
 _count_engine($self);
 }

 sub print_data_count {
 my $self = shift;
 print ’Current data count: ’, _count_engine($self), "\n";
 }

In other words, I design the interface to the new subroutine even before I write its code. Note how much
more readable these subroutines have become.

Then, Design the Engine
I like to think of code shared between two subroutines or methods as the ‘engine’ that powers those
functions.
Here‘s how _count_engine() powers the two previous methods.
 sub _count_engine {
 my $self = shift;
 my %data = %$self;
 my ($count);
 foreach (keys %data) {
 $count++ unless ($reserved{$_});
 }
 return $count;

03 May 2003 3

Repeated-Code-Is-a-Mistake pod2pdf

 }

A Side Benefit from Extracting Repeated Code
Extracting repeated code enabled me to see other places in the original methods where I could eliminate
superfluous code.

Data::Presenter version 0.43:

 sub get_data_count {
 my $self = shift;
 my $count = ’’;
 $count = _count_engine($self);
 return $count;
 }

Data::Presenter version 0.44:

 sub get_data_count {
 my $self = shift;
 _count_engine($self);
 }

Eliminate Synthetic Variables
 MJD would call $count in v0.43 a synthetic variable:

 an artifact of the way we solve the problem ...
 inessential to the problem itself.

 $count was useful for readability early in Data::Presenter‘s development.

 But _count_engine() improves the readability so much that $count can now be eliminated.

 Assuming there‘s no loss of readability, eliminating synthetic variables improves the code‘s
readability.

Two Methods Sharing an Engine
Here‘s a slightly more complicated example of an engine that powers two methods, one which prints data
records to STDIN and one to file.
Once again, we first look at the interfaces or ‘wrappers’.
 sub print_to_screen {
 my $class = shift;
 my %data = %$class;
 _print_engine(\%data, \%reserved);
 }

 sub print_to_file {
 my ($class, $outputfile) = @_;
 my %data = %$class;
 my $oldfh = select OUT;
 open(OUT, ">$outputfile") || die;
 _print_engine(\%data, \%reserved);
 close(OUT) || die;
 select($oldfh);
 }

The Engine That Powers the Two Methods

 sub _print_engine {
 my ($dataref, $reservedref) = @_;
 my %data = %$dataref;

4 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

 my %reserved = %$reservedref;
 foreach my $i (sort keys %data) {
 unless ($reserved{$i}) {
 print $_, ’;’ foreach (@{$data{$i}});
 print "\n";
 }
 }
 }

Wrappers and Engines
 As the programming tasks we face become more complicated, leveraging the value of storing repeated

code in subroutines becomes more challenging.

 We‘ve already seen one useful technique: Write simple ‘wrapper’ functions around ‘engine’ functions
which contain the repeated code and which do the heavy lifting.

 A wrapper‘s interface should be designed for user-friendliness. The test of user-friendliness:

 Does the interface prompt the user to pass the correct number and type of arguments to the
engine?

User-Friendly Wrappers
To solve a different problem on my day job, I wrote a package called Mall::Instructor. Each instructor on
the treatment mall has a profile. To get an instructor‘s profile, I offer the user these choices:

 Output Options: On screen (STDOUT)? Or print to file?

 Selection Options: All instructors? Or just individually named instructors?

 my $m1 = Mall::Instructor->new();

 $m1->display_profile(’Adams’, ’Jones’); # selected data records
 $m1->display_profile(); # all data records

 $m1->write_profile(’Adams’, ’Jones’); # selected data records
 $m1->write_profile(); # all data records

How many different cases do I have to account for?

Wrappers Pass Arguments to Engines
2 wrappers and 1 engine handle 4 different cases. Here are the wrappers:
 sub display_profile {
 my $class = shift;
 if (@_) {
 my @requested = @_;
 _profile_engine($class, \@requested);
 } else {
 _profile_engine($class, ’all’);
 }
 }

 sub write_profile {
 my $class = shift;
 if (@_) {
 my @requested = @_;
 _profile_engine($class, \@requested, ’write’);

03 May 2003 5

Repeated-Code-Is-a-Mistake pod2pdf

 } else {
 _profile_engine($class, ’all’, ’write’);
 }
 }

The Profile Engine (part 1)
The first half of the engine handles the cases where all instructors are selected.
 sub _profile_engine {
 my $self = shift;
 my $request_ref = shift;
 my $write = shift if ($_[0]);
 my %data = %$self;
 my (@sought);

 # if no arguments are provided, default to all members of category
 if ($request_ref eq ’all’) {
 push(@sought, $_) foreach (sort keys %data);

 # if we’re just displaying results on screen ...
 if (! $write) {
 $self->_profile_subengine(\%data, $_) foreach (@sought);
 }

 # but if we’re writing to file (only one file, in this case) ...
 else {
 my $output = ’all_in_category.txt’;
 my $oldfh = select OUT;
 open OUT, ">$output" or die;
 $self->_profile_subengine(\%data, $_) foreach (@sought);
 close OUT or die;
 select($oldfh);
 }
 }

The Profile Engine (part 2)
The second half of the engine handles the cases where we select individual operators to appear in the output.
 # but if arguments are provided, handle them properly:
 # make sure argument is actually in the database
 else {
 push(@sought, $_) foreach (sort keys %data);

 # if we’re just displaying results on screen ...
 if (! $write) {
 foreach (@sought) {
 defined $data{$_}
 ? $self->_profile_subengine(\%data, $_)
 : print "$_ not found.\n\n";
 }
 }

 # but if we’re writing to file(s) (one file per element) ...
 else {
 foreach (@sought) {
 if (defined $data{$_}) {
 my $output = $_ . ’.txt’;

6 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

 my $oldfh = select OUT;
 open OUT, ">$output" or die;
 $self->_profile_subengine(\%data, $_);
 close OUT or die;
 select($oldfh);
 } else {
 print "$_ not found.\n\n";
 }
 }
 }
 }

Engines Can Have Subengines
What‘s that < $self->_profile_subengine(\%data, $_) doing there?
 defined $data{$_}
 ? $self->_profile_subengine(\%data, $_)
 : print "$_ not found.\n\n";

... and in another spot ...
 open OUT, ">$output" or die;
 $self->_profile_subengine(\%data, $_);
 close OUT or die;

Is it the same subroutine holding repeated code?

Subengines Deferred
Yes and no. But we‘ll come back to this later when we discuss polymorphism.

From Subroutines to Modules
When you realize that a subroutine you‘ve written for one script can be used with little or no modification in
another script, you‘re ready to write your first module.

My First Module
Directory::Tools. A set of subroutines which determine whether, from a given directory, you have certain
specified subdirectories, whether they are empty or not,etc.
 use Directory::Tools qw(kill_subdirectories);

 @subdirs_matched = check_dir_structure(’subdir1’, ’subdir2’);

 @subdirs_added = add_subdir(’subdir4’, ’subdir5’);

 @subdirs_added = add_subdir_only_if_new(’subdir6’, ’subdir7’);

 @subdirs_killed = kill_subdirs(’subdir9’, ’subdir10’);

A Regular Module Exports Its Subroutines
Directory::Tools is a regular (i.e., non-object-oriented) Perl module. It exports subroutines either
automatically or on specific request. Those subroutines become directly callable in the main package; they
are not method calls.
 package Directory::Tools;
 use Exporter;
 @ISA = ("Exporter");
 @EXPORT = qw(check_dir_structure
 add_subdir

03 May 2003 7

Repeated-Code-Is-a-Mistake pod2pdf

 add_subdir_only_if_new);
 @EXPORT_OK = qw(kill_subdirs);
 $VERSION = 0.4;

Your First Module Won‘t Be Your Greatest
 Directory::Tools is very limited. It examines only one level of subdirectories beneath the current

directory.

 Directory::Tools was largely born out of ignorance. I didn‘t know how to use standard Perl modules
like File::Find that can do the job more effectively.

 I don‘t use it in any new work that I do, but I still use it in one script that I run every day.

My First Object-Oriented Module
Two years ago I wrote my first object-oriented module, Timerecorder. It‘s a crude stopwatch which I apply
to various parts of a script.
 use Timerecorder;
 my $tr = Timerecorder->new;

 $tr->start_recording();
 $tr->record_time(’check_dir_structure’);
 $tr->stop_recording();
 $tr->print_to_stats_file("$this_key");
 $tr->print_overall_time();

A Primitive Profiler
 Timerecorder is a primitive profiler: a program used to examine the speed or efficiency or another

program.

 But I didn‘t even know that term until I attended a talk by Mark Jason Dominus last month, in which
he discussed better profilers available on CPAN.

 Its structure is taken directly from Damian Conway‘s Object Oriented Perl.

 Not repeating code is one way of re-using code.

 So is stealing ... er, borrowing it from an expert.

Suddenly, I Was Teaching Perl!
 I whipped together a course using HTML slides whose order was controlled with a simple plain-text

file:
 lists.slide.txt
 arrays.slide.txt
 last_index.slide.txt
 qw.slide.txt
 list_assignment.slide.txt

 I was constantly comparing the list of file names above with the files I had actually created in the
current working directory.

 Which slides were present?

 Which slides were missing?

 Which slides were unused?

 I figured there must be some standard recipe for comparing lists. There is.

8 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

To Find a Recipe, Look in the Cookbook
 The Perl Cookbook, by Tom Christiansen and Nat Torkington, shows in Recipes 4.6 and 4.7 how to

construct ‘’seen hashes‘’ to compare the contents of two lists.
 foreach (@A) { $seenA{$_} = 1 };
 foreach (@B) { $seenB{$_} = 1 };
 foreach (keys %seenA) {
 if (exists $seenB{$_}) {
 push @both, $_;
 } else {
 push @Aonly, $_;
 }
 foreach (keys %seenB) {
 push @Bonly, $_ unless exists $seenA{$_};
 }

 But once I had written this code in two different scripts, I wondered whether there already was a
module to take care of it?

 I searched CPAN but could find no simple implementation of this code. So I wrote my own.

Voila! My First CPAN Distribution
 List::Compare was my first module distributed on CPAN:

http://search.cpan.org/author/JKEENAN/List-Compare-0.16/Compare.pm .
 $lc = List::Compare->new(\@A, \@B);

 @intersection = $lc->get_intersection;
 @union = $lc->get_union;
 @Lonly = $lc->get_unique;
 @Ronly = $lc->get_complement;
 @LorRonly = $lc->get_symmetric_difference;

 Now, not only do I not have to repeat the code needed to compare two lists, no one else in the world
does either!

Reusing Code via Object Oriented Perl
 Inheritance and Polymorphism demystified.

 They‘re just ways of re-using code.

Inheritance in Object Oriented Perl
Damian Conway, Object Oriented Perl, p. 169:
 Inheritance in Perl ... means nothing more than: if you can’t find
 the method requested in an object’s blessed class, look for it in the
 classes that the blessed class inherits from.

Put even more simply: If you can‘t find it here, this is how you find it.

Remember Data::Presenter?
When you use my Data::Presenter module, you actually invoke it from a subclass which inherits many
methods, including its constructor, from Data::Presenter itself.
 use Data::Presenter;
 use Data::Presenter::SampleCensus;
 ...
 $dp1 = Data::Presenter::SampleCensus->new(
 $sourcefile, \@fields,\%parameters, $index);

03 May 2003 9

Repeated-Code-Is-a-Mistake pod2pdf

 $data_count = $dp1->get_data_count();
 $dp1->print_data_count();
 $keysref = $dp1->get_keys();

 $dp1->print_to_screen();
 $dp1->print_to_file($outputfile);
 $dp1->print_with_delimiter($outputfile, $delimiter);
 $dp1->full_report($outputfile);

Due to inheritance, none of the code for these methods needs to be repeated inside
Data::Presenter::SampleCensus or any other subclass which inherits from Data::Presenter.

Why Subclass at All?
Each Data::Presenter subclass holds subroutines which are fine-tuned to the messy details of parsing data
from the database which the subclass is designed to handle.

&Data::Presenter::new

 sub new {
 ...
 $self = bless {}, ref($class) || $class;
 ...
 $dataref = $self->_init(
 $source, $fieldsref, $paramsref, $index, \%reserved);
 ...
 %$self = %$dataref;
 return $self;
 }

&Data::Presenter::SampleCensus::_init

 sub _init {
 ($self, $sourcefile, $fieldsref, $paramsref, $index) = @_;
 %data = ();
 $data{’fields’} = $fieldsref;
 $data{’parameters’} = $paramsref;
 $data{’index’} = [$index];
 ... # DATA MUNGING
 $data{$corrected[$index]} = \@corrected;
 return \%data;
 }

An Inherited Constructor
 When you call

 $dp1 = Data::Presenter::SampleCensus->new()

... Perl notes that there is no subroutine called new() in Data::Presenter::SampleCensus.

 Perl then asks: From whom does Data::Presenter::SampleCensus inherit?

 The answer is found in @Data::Presenter::SampleCensus::ISA.
 @ISA = qw(Data::Presenter);

Initializer in the Invoking Subclass
 When we reach

 $dataref = $self->init(...);

10 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

... we are instructed to call the version of _init() found in the invoking subclass — in this case
Data::Presenter::SampleCensus::_init().

 That _init() function parses data from a specific sourcefile.

 We would write a different Data::Presenter subclass with its own _init() subroutine to parse a
different sourcefile.

 But in each case we would re-use the parent Data::Presenter module‘s constructor and output methods.

Interface Polymorphism

 foreach $datum (@data) { $datum->print_me(); }

 @data = (
 XML::File->new("./lamasery.xml");
 HTTP::get->new("http://www.perl.org/news.html");
 Signature->new();
 }

 As long as each object‘s class‘s interface provides a print_me() method, the method call will
handle < $datum->print_me(); correctly. (Damian Conway, Object Oriented Perl, p. 204.)

 In interface polymorphism, we‘re re-using the interface!

Inheritance Polymorphism
To print labels for your CD collection, you might design a one-size-fits-all label that would work for any
CD, but then design labels for specific genres that printed extra information more appropriate to those
genres.
 $cd = CD::Music->new(...);
 $cdc = CD::Music::Classical->new(...);
 $cdj = CD::Music::Jazz->new(...);

 $cd->print_label(); # would work for any CD
 $cdc->print_label(); # would work for classical CDs
 $cdj->print_label(); # would work for jazz CDs

Inheritance polymorphism requires that objects provide a specific method and that they belong to classes in
a common hierarchy.
We re-use the interface and we re-use the code in < $cd->print_label() if our invoking class does
not define its own print_label() method.

Another Kind of Polymorphism
 Conway‘s discussion of polymorphism is couched in terms of publicly callable methods.

 But a publicly callable method in a parent class might internally call a subroutine which is located in
the invoking child class — and is defined differently in each such child class.

 Remember this code from Mall::Instructor?
 defined $data{$_}
 ? $self->_profile_subengine(\%data, $_)
 : print "$_ not found.\n\n";

... and in another spot ...
 open OUT, ">$output" or die;
 $self->_profile_subengine(\%data, $_);
 close OUT or die;

03 May 2003 11

Repeated-Code-Is-a-Mistake pod2pdf

‘Under-the-hood’ Polymorphism
 Actually, _profile_engine() is not a function found in Mall::Instructor.

 It‘s found in a package called Mall, from which Mall::Instructor — and other subclasses such as
Mall::Room and Mall::Schedule — inherit.

 Each Mall subclass displays its data in slightly different ways.

 So each such subclass has its own _profile_subengine() to handle the messy details.

 But each such _profile_subengine() has the same interface and similar internal structure.

 The < $self-> means: Call the version of _profile_subengine() found in the invoking
package.

Identically Named Subroutines in Different Invoking Classes
Here are two different functions with the same name but found in different invoking packages:
 sub _profile_subengine {
 my ($self, $dataref, $current) = @_;
 my @record = @{${$dataref}{$current}};
 print <<INSTRUCTOR;
 Instructor Profile for:\t$record[1] $record[0]
 Title: $record[3]
 Department: $record[2]
 Phone Ext.: $record[5]
 INSTRUCTOR
 }

 sub _profile_subengine {
 my ($self, $dataref, $current) = @_;
 my @record = @{${$dataref}{$current}};
 print <<SCHEDULE;
 Profile for Group $current in Room $record[0] at Time Slot $record[1]
 Room: $record[0]
 Time Slot: $record[1]
 Group Name: $record[2]
 Leader: $record[5]
 SCHEDULE
 }

‘Under-the-hood’ Polymorphism in List::Compare
 My CPAN module List::Compare also features ‘under-the-hood’ polymorphism.

 Whether you wish to compare two lists or an arbitrary number of lists, the interface looks the same.
 $lc = List::Compare->new(\@A, \@B);
 @comp = $lc->get_complement;

 $lcm = List::Compare->new(\@A, \@B, \@C);
 @comp = $lcm->get_complement;

 But since the mathematical notions of ‘union‘, ‘intersection‘, ‘complement‘, etc. are quite different for
three or more sets, the calculation of these relationships inside List::Compare is quite different as well.

Different Initializers for Different Numbers of Arguments
Under the hood, List::Compare::new() calls a different _init() routine depending on the number
of arguments passed to it:
 sub new {
 $class = shift;
 @args = @_;

12 03 May 2003

pod2pdf Repeated-Code-Is-a-Mistake

 if (@args > 2) {
 $class .= ’::Multiple’;
 $self = bless {}, ref($class) || $class;
 } else {
 $self = bless {}, ref($class) || $class;
 }

 $dataref = $self->_init(@args);
 %$self = %$dataref;
 return $self;
 }

In Conclusion ...

What We‘ve Learned (I)
 Format your code in a consistent manner (or use perltidy to make it so). Then, use diff to identify

where code might differ in blocks that appear to be repeated.

 The subroutine is the basic unit of code re-use in Perl.

 Place code shared between two subroutines in an engine, then write a wrapper around the engine.

 Engines can have subengines.

 The test of an interface‘s user-friendliness is whether it guides the user to pass the correct number and
types of arguments to a subroutine.

What We‘ve Learned (II)
 While working a project, begin with synthetic variables to maximize readability.

 But as the project develops, eliminating synthetic variables may enable you to identify patterns of code
repetition. If so, long-term maintainability and reusability will increase.

What We‘ve Learned (III)
 When you‘ve used the same subroutine in two different scripts, it belongs in a module.

 Regular Perl modules export their functions. Object-oriented Perl modules do not; they use method
calls instead.

 Inheritance and polymorphism are methods of reusing code both in the way methods are called and in
the way they are coded internally.

What We‘ve Learned (IV)
 Avoiding repeated code increases readability, maintainability and reusability.

The End
James E. Keenan
http://www.concentric.net/~Jkeen/repeated
jkeenan@cpan.org (put ‘repeated’ in subject line)

03 May 2003 13

Repeated-Code-Is-a-Mistake pod2pdf

14 03 May 2003

	Table of Contents
	Repeated Code Is a Mistake
	YAPC::CA
	Carlton University
	Ottawa, Ontario
	Friday, 16 May 2003
	James E. Keenan
	http://www.concentric.net/~Jkeen/repeated/
	Inspiration
	Repeated Code Is a Mistake!
	Locus Classicus
	Obsession
	Avoiding Code Duplication as a General Principle of Computing Languages
	Mode of Presentation

	Subroutine as Basic Unit of Reusable Code
	Rule of Thumb
	A Database Report Problem
	Data::Presenter
	get_data_count()
	print_data_count()
	What`s the diff?
	First, Design the Interface
	Then, Design the Engine
	A Side Benefit from Extracting Repeated Code
	Data::Presenter version 0.43:
	Data::Presenter version 0.44:

	Eliminate Synthetic Variables
	Two Methods Sharing an Engine
	The Engine That Powers the Two Methods
	Wrappers and Engines
	User-Friendly Wrappers
	Wrappers Pass Arguments to Engines
	The Profile Engine (part 1)
	The Profile Engine (part 2)
	Engines Can Have Subengines
	Subengines Deferred

	From Subroutines to Modules
	My First Module
	A Regular Module Exports Its Subroutines
	Your First Module Won`t Be Your Greatest
	My First Object-Oriented Module
	A Primitive Profiler
	Suddenly, I Was Teaching Perl!
	To Find a Recipe, Look in the Cookbook
	Voila! My First CPAN Distribution

	Reusing Code via Object Oriented Perl
	Inheritance in Object Oriented Perl
	Remember Data::Presenter?
	Why Subclass at All?
	&Data::Presenter::new
	&Data::Presenter::SampleCensus::_init

	An Inherited Constructor
	Initializer in the Invoking Subclass
	Interface Polymorphism
	Inheritance Polymorphism
	Another Kind of Polymorphism
	`Under-the-hood' Polymorphism
	Identically Named Subroutines in Different Invoking Classes
	`Under-the-hood' Polymorphism in List::Compare
	Different Initializers for Different Numbers of Arguments

	In Conclusion ...
	What We`ve Learned (I)
	What We`ve Learned (II)
	What We`ve Learned (III)
	What We`ve Learned (IV)
	The End

