
POD Translation
by pod2pdf
ajf@afco.demon.co.uk

List-Compare

Title Page List-Compare

23 May 2004 Fly leaf

Table of Contents
List-Compare

List::Compare: 1
Determining Relationships among Lists with Perl 1

YAPC::NA::2004 1
State University of New York at Buffalo 1
Friday, June 18, 2004, 9:50 am 1
James E. Keenan 1

Necessity Is the Mother of Invention of Perl Modules 1
Seen-Hashes as Lookup Tables 1
Repeated Code Is a Mistake 1
Why Not a Module to Get Information from Lists? 1
I Want It Faster! 2
I Want to Compare More Than 2 Lists! 2
3 or More Lists Are Trickier 2
What If I Want References, Not Lists? 2
Are These Items Found in Those Lists? 3
Are These Items Found in Any Lists? 3
What If I Already Have Seen-Hashes? 3
Can I Get It to Go Faster? 4
Why Bother with Objects? 4
Is the Interface Too Messy? 4
An Alternative Interface 5
My Hubris Leads to Your Laziness 5

23 May 2004 i

List-Compare Table of Contents

ii 23 May 2004

pod2pdf List-Compare

List::Compare:

Determining Relationships among Lists with Perl
YAPC::NA::2004
State University of New York at Buffalo
Friday, June 18, 2004, 9:50 am
James E. Keenan
 To follow slides, go to:

http://mysite.verizon.net/jkeen/perl/YAPC/YAPC-NA-2004/List-Compare/slides/slide_001.html

Necessity Is the Mother of Invention of Perl Modules
 While preparing to teach Perl, had to keep track of 2 types of text files:

 Plain-text source files for an HTML-based slideshow.

 Perl demonstration scripts.

 Used master list to control order within each.

 Challenge: Was every file listed in the master list actually present in directory?

Seen-Hashes as Lookup Tables
 Following Perl Cookbook, created ‘seen-hashes’ for each list

 # loop through master file to populate @master
 for (@master) { $seen_master{$_} = 1; }

 # read directory holding source files to populate @sources
 for (@sources) { $seen_sources{$_} = 1; }

 Then, ask whether master list is subset of source file list.
 $subset_status = 1;
 for (@master) {
 unless (exists $seen_sources{$_}) {
 $subset_status = 0;
 last;
 }
 }

 Wrote similar code to keep track of demonstration Perl scripts.

 Soon got tired of repeating code for seen-hashes and subsets.

Repeated Code Is a Mistake
 What I learned from Mark Jason Dominus:

 Code repeated within a single script: Refactor into subroutine.

 Code repeated across scripts: Refactor into module.

Why Not a Module to Get Information from Lists?
 With a module, I could get a cleaner interface:

 use List::Compare;
 $lc = List::Compare->new(\@master, \@sources);

23 May 2004 1

List-Compare pod2pdf

 $subset_status = $lc->is_LsubsetR();

 But why stop at just subset relationships? How about these:
 @intersection = $lc->get_intersection();
 @union = $lc->get_union();
 @unique = $lc->get_unique;
 @complement = $lc->get_complement();
 @symmetric_difference = $lc->get_symmetric_difference;

Perl Cookbook uses seen-hashes to derive these relationships between 2 lists.

 Brainstorm: If I modularized this code, I‘d never have to re-type it in a script.

I Want It Faster!
 List::Compare‘s Regular mode computes all relationships inside the constructor.

 Challenge: Why have constructor compute all relationships if you only want one?

 Response: List::Compare‘s Accelerated Mode.
 $lca = List::Compare->new(’-a’, \@master, \@sources);

 @intersection = $lca->get_intersection;

I Want to Compare More Than 2 Lists!
 Challenge: Why should I be limited to comparing only 2 lists at a time?

 @Al = qw(abel abel baker camera delta edward fargo golfer);
 @Bob = qw(baker camera delta delta edward fargo golfer hilton);
 @Carmen = qw(fargo golfer hilton icon icon jerky kappa);
 @Don = qw(fargo icon jerky);
 @Ed = qw(fargo icon icon jerky);

 Response: List::Compare‘s Multiple mode ... which looks just like the Regular mode.
 $lcm = List::Compare->new(\@Al, \@Bob, \@Carmen, \@Don, \@Ed);

 @intersection = $lcm->get_intersection;

3 or More Lists Are Trickier
Challenge: How would I get items unique to @Carmen?
 @Al = qw(abel abel baker camera delta edward fargo golfer);
 @Bob = qw(baker camera delta delta edward fargo golfer hilton);
 @Carmen = qw(fargo golfer hilton icon icon jerky kappa);
 @Don = qw(fargo icon jerky);
 @Ed = qw(fargo icon icon jerky);

Response: Pass @Carmen‘s index position in constructor‘s @_ as argument to get_unique().
 $lcm = List::Compare->new(\@Al, \@Bob, \@Carmen, \@Don, \@Ed);
 # 0 1 2 3 4

 @unique_Carmen = $lcm->get_unique(2);

What If I Want References, Not Lists?
 Challenge: Most List::Compare methods return a list. What if I only need that list as input to some

other function?
 @union = $lc->get_union;
 some_other_function(@union);

Wouldn‘t it be faster if I just returned and passed an array reference?

2 23 May 2004

pod2pdf List-Compare

Response: Parallel methods which return references
 $unionref = $lc->get_union_ref;
 some_other_function($unionref);

Are These Items Found in Those Lists?
Challenge: Sometimes we want to know in which of several lists one or more items can be found.
Response: Two new methods: is_member_which() and are_members_which().

 @memb_arr = $lcm->is_member_which(’golfer’);

 # @memb_arr will hold: (0, 1, 2)

 $memb_hash_ref = $lcm->are_members_which(
 [qw| abel baker fargo hilton zebra |]);

 # $memb_hash_ref will be:

 {
 abel => [0],
 baker => [0, 1],
 fargo => [0, 1, 2, 3, 4],
 hilton => [1, 2],
 zebra => [],
 };

Are These Items Found in Any Lists?
 Challenge: Sometimes we want to know whether one or more items were found in any of several lists

 Response: Two new methods which return Boolean(-ish) values

 $found = $lcm->is_member_any(’abel’);
 # $found will be: 1

 $memb_hash_ref = $lcm->are_members_any(
 [qw| abel baker fargo hilton zebra |]);

 # $memb_hash_ref will be:

 {
 abel => 1,
 baker => 1,
 fargo => 1,
 hilton => 1,
 zebra => 0,
 };

What If I Already Have Seen-Hashes?
 Challenge: Sometimes we‘ve already computed seen-hashes.

 %seenAl = (abel => 2, baker => 1, camera => 1,
 delta => 1, edward => 1, fargo => 1,
 golfer => 1);

 %seenBob = (baker => 1, camera => 1,
 delta => 2, edward => 1, fargo => 1,
 golfer => 1, hilton => 1);

23 May 2004 3

List-Compare pod2pdf

Since List::Compare internally transforms lists into seen-hashes, why can‘t we just pass the
seen-hashes directly?

 Response: Now we can.
 $lcsh = List::Compare->new(\%seenAl, \%seenBob);

 @intersection = $lcsh->get_intersection;

Can I Get It to Go Faster?
 By default, List::Compare sorts the lists its methods returns.

 You can get a small speed boost if you pass the Unsorted option to the constructor.
 $lcu = List::Compare->new(’-u’, \@Llist, \@Rlist);

or
 $lcu = List::Compare->new(’--unsorted’, \@Llist, \@Rlist);

 @intersection = $lcu->get_intersection;
 # @intersection will not be sorted

Why Bother with Objects?
 Challenge: Why bother with the overhead cost of creating a List::Compare object?

 Response: A faster but less elegant interface: List::Compare::Functional
 use List::Compare::Functional qw(get_union get_complement);

 @union = get_union([\@Al, \@Bob, \@Carmen, \@Don, \@Ed]);

 No constructor, so lists must be passed each time a function is called.

 References to lists are themselves placed in a list. A reference to that is passed to the function.

 Where a function needs extra arguments, these must also be wrapped in an array which is passed by
reference to the function.
 @complement_Don =
 get_complement([\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 [3]);

Is the Interface Too Messy?
 Challenge: Some might say that List::Compare::Functional‘s interface is not very self-documenting.

 use List::Compare::Functional qw(
 get_complement
 is_LsubsetR
 are_members_which
);

 @complement = get_complement(
 ’-u’,
 [\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 [3],
);

 $LR = is_LsubsetR(
 [\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 [2,3],
);

 $memb_hash_ref = are_members_which(
 [\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 [qw| abel baker fargo hilton zebra |],
);

4 23 May 2004

pod2pdf List-Compare

 You have to get the order of the arguments just right — and can you tell what each array reference
means?

An Alternative Interface
 Response: David H. Adler suggested passing a single hash reference with named arguments:

 @complement = get_complement({
 lists => [\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 item => 3,
 unsorted => 1,
 });

 $LR = is_LsubsetR({
 lists => [\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 pair => [2,3],
 });

 $memb_hash_ref = are_members_which({
 lists => [\@Al, \@Bob, \@Carmen, \@Don, \@Ed],
 items => [qw| abel baker fargo hilton zebra |],
 });

 More verbose, but more self-documenting.

 The order in which arguments are passed no longer matters, but you have to get the names of the keys
right.

 Now available for both List::Compare and List::Compare::Functional. See documentation for version
0.29 or later.

My Hubris Leads to Your Laziness
 To compare lists, you never have to code up a seen-hash again.

 Just use List::Compare;

 Get it: http://search.cpan.org/~jkeenan/List-Compare-0.30/ or
http://mysite.verizon.net/jkeen/perl/modules/List-Compare/

 Kudos and complaints: jkeenan@cpan.org

 Inspirations:

 Perl Cookbook (2nd ed.), Tom Christiansen and Nathan Torkington, O‘Reilly & Associates,
2003.

 Program Repair Shop and Red Flags, Mark Jason Dominus,
http://www.perl.com/lpt/a/2000/11/repair3.html

 For further reading: The Perl Journal, May 2004, http://www.tpj.com

23 May 2004 5

List-Compare pod2pdf

6 23 May 2004

	Table of Contents
	List::Compare:
	Determining Relationships among Lists with Perl
	YAPC::NA::2004
	State University of New York at Buffalo
	Friday, June 18, 2004, 9:50 am
	James E. Keenan

	Necessity Is the Mother of Invention of Perl Modules
	Seen-Hashes as Lookup Tables
	Repeated Code Is a Mistake
	Why Not a Module to Get Information from Lists?
	I Want It Faster!
	I Want to Compare More Than 2 Lists!
	3 or More Lists Are Trickier
	What If I Want References, Not Lists?
	Are These Items Found in Those Lists?
	Are These Items Found in Any Lists?
	What If I Already Have Seen-Hashes?
	Can I Get It to Go Faster?
	Why Bother with Objects?
	Is the Interface Too Messy?
	An Alternative Interface
	My Hubris Leads to Your Laziness

