
A Development Tool for Improving Library Code
James E Keenan
Yet Another Perl Conference::North America::2015
Salt Lake City, Utah
Monday, June 8 2015

Today I'm going to present a simple development tool that enabled me to
rapidly improve the existence of library code I wrote many years ago. The
code I will present is probably the simplest code anyone will present at
this year's YAPC -- so if you want complex stuff, leave now for one of the
other sessions happening now. But because this tool is easy to use and has
few prerequisites, you will be able to shape this tool to meet your
development needs and improve your code as well.

I'll talk first about the library code and the situation that led me to want
to improve its performance. Then, in stages, I'll build up a Perl program I
used while refactoring that code. Finally, I'll present the development
tool by which I measured performance improvements.

Library Code

When I use the term library code in the context of Perl, I'm referring to
something which, for short, "looks like a CPAN distribution." That is, it
consists of:

1 Perl modules -- *.pm files -- which provide functions or methods
 available for use in other Perl programs.

2 Test programs arranged in a test suite.

3 A build tool such as Makefile.PL which, in tandem with a library like
 ExtUtils-MakeMaker, provides functionality for compiling, testing and
 installing the Perl modules.

 $> perl Makefile.PL

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 2	

 $> make
 $> make test
 $> make install

For the purpose of today's discussion, I'm going to assume that when you run
your test suite -- that is, when you call "make test" -- you exercise a very
high proportion of the code in your Perl modules. This means that you have
very high test coverage of your source code. We call measuring the degree
to which your test suite exercises your source code coverage analysis. You
can perform coverage analysis by using Paul Johnson's Devel-Cover library,
available on CPAN.

List-Compare

List-Compare <http://search.cpan.org/dist/List-Compare/> is a Perl library
which I wrote and first uploaded to CPAN in 2002. It provides basic set
relationships like intersection, union, subset, and so forth, among two or
more lists. It started life as a wrapper around certain recipes in the
second edition of the Perl Cookbook. It has both object-oriented and
functional interfaces, and from the start I was writing tests for both
interfaces.

I knew nothing about coverage analysis until I heard Paul Johnson speak
about Devel-Cover at YAPC::EU in Paris in 2003. And I didn't start using
Devel-Cover myself until Andy Lester gave a talk about it at YAPC::NA in
Buffalo in 2004. But once I learned how to do it, I became a coverage
fanatic. I wrote more tests for List-Compare until I knew my test coverage
of its statements was more than 99%.

I put List-Compare under version control using Subversion in 2005 -- and
then left it largely untouched for the next nine years. When I started my
current job at MediaMath in 2012, I was pleasantly surprised to find that
List-Compare was already being used in production. Better still,
List-Compare is used by about 25 other CPAN libraries
<https://metacpan.org/requires/distribution/List-Compare>.

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 3	

In 2014 I moved List-Compare's version control from Subversion to Git and
placed a repository for it on git repository on github.com
<https://github.com/jkeenan/list-compare.git>. But I still made very few
changes to the source code.

Set-Intersection

In February of this year, however, I somehow became aware of the existence
of another CPAN library called Set-Intersection
<http://search.cpan.org/dist/Set-Intersection/>, written by a Japanese Perl
hacker named Katou Akira who goes by the handle of turugina.
Set-Intersection follows the Unix adage of "do one thing and do it well".
It focuses strictly on computing the intersection of sets; you can't use it
for any other set relationships. But it computes intersections much
faster than List-Compare does. I was flattered to see that
Set-Intersection's documentation made reference to List-Compare. I decided
to repay the flattery by sending turugina a small patch for documentation
and test improvements; that patch was accepted.

I then decided to see if I could speed up the way List-Compare computes
intersections by "borrowing" turugina's method. Of course, to see whether
that borrowing actually worked, I would have to start benchmarking
List-Compare -- and I hadn't done any serious benchmarking of List-Compare
in thirteen years. I would also have to make sure that I didn't introduce
any bugs during the refactoring -- but I could trust that the testing and
coverage analysis I had done more than a decade earlier would quickly alert
me to such bugs.

Refactoring Workflow

I adopted the following workflow.

* In List-Compare's interface, I tackled one, externally visible function
 at a time, creating one new git branch at a time for work on each
 function.

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 4	

 $> git checkout -b speedup_get_intersection

* List-Compare's external functions tend to call internal functions to
 accomplish their work. Back in February the "get_intersection()"
 function called a number of internal functions which were defined in
 package List::Compare::Base::_Auxiliary. So that's where I began to
 hack:

 $> vi lib/List/Compare/Base/_Auxiliary.pm

* One of the internal functions "get_intersection()" called was
 "_calculate_hash_intersection()". This is how it was defined:

 sub _calculate_hash_intersection {
 my $xintersectionref = shift;
 my @xkeys = keys %{$xintersectionref};
 my %intersection = %{${$xintersectionref}{$xkeys[0]}};
 for (my $m = 1; $m <= $#xkeys; $m++) {
 my %compare = %{${$xintersectionref}{$xkeys[$m]}};
 my %result = ();
 foreach (keys %compare) {
 $result{$_}++ if (exists $intersection{$_});
 }
 %intersection = %result;
 }
 return \%intersection;
 }

 In the subroutine definition above, you will notice that at two
 locations I assign one hash to another hash. When I wrote this code
 thirteen years ago, I did so to improve the code's readability and
 decrease the line noise. But in the second case, when I was assigning
 to %compare, I used %compare only once thereafter. It turns out that
 you can get measurable performance improvements just by eliminating
 unnecessary hash-to-hash assignments.

* I stored my revisions in the repository.

 $> git add lib/List/Compare/Base/_Auxiliary.pm
 $> git commit -m "Eliminate hash-to-hash assignment in
_calculate_hash_intersection()."

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 5	

* I ran my test suite to make sure tests were still passing.

 $> perl Makefile.PL
 $> make
 $> make test

So far, so good. Nothing really new so far. But here's what I did to
incorporate benchmarking into this workflow.

The "Direct" Program

I selected a few representative test cases from my test suite and wrote a
new program holding them. That meant importing Test::More into my
program.

 # get_1_intersection.pl
 use strict;
 use warnings;
 use 5.10.1;
 use Test::More qw(no_plan);
 use lib '/home/jkeenan/gitwork/list-compare/blib/lib';
 use List::Compare::Functional qw(get_intersection);

 my $medium = [1001 .. 4000];
 my $small = [991 .. 1010];

 my ($args, $expect, @int, $seen);

 say "List::Compare::Functional version: ",
 sprintf("%.5f" => $List::Compare::Functional::VERSION);

 $args = [$medium, $small];
 $expect = { map { $_ => 1 } (1001 .. 1010) };
 @int = get_intersection($args);

 $seen = { map { $_ => 1} @int };

 is_deeply($seen, $expect, "Got expected intersection");

I then reworked the test functions I was calling to be callable for
benchmarking. That meant importing Benchmark into my program.

 # get_2_intersection.pl
 use strict;

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 6	

 use warnings;
 use 5.10.1;
 use Test::More qw(no_plan);
 use Benchmark qw(timethis);
 use lib '/home/jkeenan/gitwork/list-compare/blib/lib';
 use List::Compare::Functional qw(get_intersection);

 my $medium = [1001 .. 4000];
 my $small = [991 .. 1010];

 my ($args, $expect, @int, $seen);

 say "List::Compare::Functional version: ",
 sprintf("%.5f" => $List::Compare::Functional::VERSION);

 $args = [$medium, $small];
 $expect = { map { $_ => 1 } (1001 .. 1010) };

 @int = get_intersection($args);
 $seen = { map { $_ => 1} @int };

 is_deeply($seen, $expect, "Got expected intersection");

 timethis(1_000, sub { get_intersection($args) });

I then enabled the program to run either the tests, or the benchmarks, or
both by putting the tests and the benchmarks in different blocks which would
run -- or not run -- depending on what switches I passed to the program on
its command-line. That meant importing Getopt::Long -- another library
distributed with the Perl 5 core -- into my program.

 # get_3_intersection.pl
 use strict;
 use warnings;
 use 5.10.1;
 use Test::More qw(no_plan);
 use Benchmark qw(timethis);
 use Getopt::Long;
 use lib '/home/jkeenan/gitwork/list-compare/blib/lib';
 use List::Compare::Functional qw(get_intersection);

 my ($tests_only, $benchmarks_only);

 GetOptions(
 "tests-only" => \$tests_only,
 "benchmarks-only" => \$benchmarks_only,
) or die("Error in command line arguments");

 die("Select either 'tests-only' or 'benchmarks-only' -- but not both!")

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 7	

 if ($tests_only && $benchmarks_only);
 if ($benchmarks_only) { pass("Running benchmarks only") };
 if ($tests_only) { pass("Running tests only") };

 my $medium = [1001 .. 4000];
 my $small = [991 .. 1010];

 my ($args, $expect, @int, $seen);

 say "List::Compare::Functional version: ",
 sprintf("%.5f" => $List::Compare::Functional::VERSION);

 $args = [$medium, $small];
 $expect = { map { $_ => 1 } (1001 .. 1010) };

 unless ($benchmarks_only) {
 @int = get_intersection($args);
 $seen = { map { $_ => 1} @int };
 is_deeply($seen, $expect, "Got expected intersection");
 }

 unless ($tests_only) {
 timethis(1_000, sub { get_intersection($args) });
 }

I called the program I just wrote the direct program since it directly calls
the tests and the benchmarks. I could run the direct program from the
command-line and get results like this:

 $> perl get_3_intersection.pl --tests-only
 ok 1 - Running tests only
 List::Compare::Functional version: 0.38000
 ok 2 - Got expected intersection
 1..2

 $> perl get_3_intersection.pl --benchmarks-only
 ok 1 - Running benchmarks only
 List::Compare::Functional version: 0.38000
 timethis 1000: 1 wallclock secs (1.32 usr + 0.00 sys = 1.32 CPU) @
757.58/s (n=1000)
 1..1

 $> perl get_3_intersection.pl
 List::Compare::Functional version: 0.38000
 ok 1 - Got expected intersection
 timethis 1000: 1 wallclock secs (1.35 usr + 0.00 sys = 1.35 CPU) @
740.74/s (n=1000)
 1..1

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 8	

The Version Comparison Program: compare-git-versions

I then wrote a second program which runs the direct program twice: first,
in the version before my refactorings, then in the version after my
refactorings. I use git to switch back-and-forth between the two versions.
I describe this second program as a version comparison program which,
as of now, I am calling compare-git-versions. How do I control which
versions I'm running? By enabling compare-git-versions to take command-
line switches as well!

 $ perl ~/gitwork/compare-git-versions/compare-git-versions \
 > --workdir=/home/jkeenan/gitwork/list-compare \
 > --program=/home/jkeenan/learn/perl/lc/get_3_intersection.pl \
 > --before=v0.38 \
 > --after=speedup_get_intersection \
 > --tests-only
 Note: checking out 'v0.38'.

 You are in 'detached HEAD' state. You can look around, make experimental
 changes and commit them, and you can discard any commits you make in this
 state without impacting any branches by performing another checkout.

 If you want to create a new branch to retain commits you create, you may
 do so (now or later) by using -b with the checkout command again.
Example:

 git checkout -b new_branch_name

 HEAD is now at daa3559... Update support information. v0.38.
 Checking if your kit is complete...
 Warning: the following files are missing in your kit:
 META.yml
 Please inform the author.
 Generating a Unix-style Makefile
 Writing Makefile for List::Compare
 Writing MYMETA.yml and MYMETA.json
 cp lib/List/Compare.pm blib/lib/List/Compare.pm
 cp lib/List/Compare/Functional.pm blib/lib/List/Compare/Functional.pm
 cp lib/List/Compare/Base/_Engine.pm blib/lib/List/Compare/Base/_Engine.pm
 cp lib/List/Compare/Base/_Auxiliary.pm
blib/lib/List/Compare/Base/_Auxiliary.pm
 Manifying 4 pod documents
 ok 1 - Running tests only
 List::Compare::Functional version: 0.38000
 ok 2 - Got expected intersection
 1..2
 Previous HEAD position was daa3559... Update support information. v0.38.
 Switched to branch 'speedup_get_intersection'
 Checking if your kit is complete...

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 9	

 Warning: the following files are missing in your kit:
 MYMETA.json
 MYMETA.yml
 Please inform the author.
 Generating a Unix-style Makefile
 Writing Makefile for List::Compare
 Writing MYMETA.yml and MYMETA.json
 cp lib/List/Compare/Base/_Auxiliary.pm
blib/lib/List/Compare/Base/_Auxiliary.pm
 cp lib/List/Compare/Base/_Engine.pm blib/lib/List/Compare/Base/_Engine.pm
 cp lib/List/Compare.pm blib/lib/List/Compare.pm
 cp lib/List/Compare/Functional.pm blib/lib/List/Compare/Functional.pm
 Manifying 4 pod documents
 ok 1 - Running tests only
 List::Compare::Functional version: 0.39000
 ok 2 - Got expected intersection
 1..2

That's the output if I run it with the "--tests-only" command-line switch.
But what's more interesting is the output I run compare-git-versions with
the "--benchmarks-only" switch instead:

 $ perl ~/gitwork/compare-git-versions/compare-git-versions \
 > --workdir=/home/jkeenan/gitwork/list-compare \
 > --program=/home/jkeenan/learn/perl/lc/get_3_intersection.pl \
 > --before=v0.38 \
 > --after=speedup_get_intersection \
 > --benchmarks-only
 Note: checking out 'v0.38'.

 You are in 'detached HEAD' state. You can look around, make experimental
 changes and commit them, and you can discard any commits you make in this
 state without impacting any branches by performing another checkout.

 If you want to create a new branch to retain commits you create, you may
 do so (now or later) by using -b with the checkout command again. Example:

 git checkout -b new_branch_name

 HEAD is now at daa3559... Update support information. v0.38.
 Checking if your kit is complete...
 Warning: the following files are missing in your kit:
 META.yml
 Please inform the author.
 Generating a Unix-style Makefile
 Writing Makefile for List::Compare
 Writing MYMETA.yml and MYMETA.json
 cp lib/List/Compare.pm blib/lib/List/Compare.pm
 cp lib/List/Compare/Base/_Engine.pm blib/lib/List/Compare/Base/_Engine.pm
 cp lib/List/Compare/Functional.pm blib/lib/List/Compare/Functional.pm

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 10	

 cp lib/List/Compare/Base/_Auxiliary.pm
blib/lib/List/Compare/Base/_Auxiliary.pm
 Manifying 4 pod documents
 ok 1 - Running benchmarks only
 List::Compare::Functional version: 0.38000
 timethis 1000: 2 wallclock secs (1.34 usr + 0.00 sys = 1.34 CPU) @
746.27/s (n=1000)
 1..1
 Previous HEAD position was daa3559... Update support information. v0.38.
 Switched to branch 'speedup_get_intersection'
 Checking if your kit is complete...
 Warning: the following files are missing in your kit:
 MYMETA.json
 MYMETA.yml
 Please inform the author.
 Generating a Unix-style Makefile
 Writing Makefile for List::Compare
 Writing MYMETA.yml and MYMETA.json
 cp lib/List/Compare/Base/_Engine.pm blib/lib/List/Compare/Base/_Engine.pm
 cp lib/List/Compare/Functional.pm blib/lib/List/Compare/Functional.pm
 cp lib/List/Compare/Base/_Auxiliary.pm
blib/lib/List/Compare/Base/_Auxiliary.pm
 cp lib/List/Compare.pm blib/lib/List/Compare.pm
 Manifying 4 pod documents
 ok 1 - Running benchmarks only
 List::Compare::Functional version: 0.39000
 timethis 1000: 1 wallclock secs (1.32 usr + 0.00 sys = 1.32 CPU) @
757.58/s (n=1000)
 1..1

Let's trim that output down:

 $ perl ~/gitwork/compare-git-versions/compare-git-versions \
 > --workdir=/home/jkeenan/gitwork/list-compare \
 > --program=/home/jkeenan/learn/perl/lc/get_3_intersection.pl \
 > --before=v0.38 \
 > --after=speedup_get_intersection \
 > --benchmarks-only

 List::Compare::Functional version: 0.38000
 timethis 1000: 2 wallclock secs (1.34 usr + 0.00 sys = 1.34 CPU) @
746.27/s (n=1000)

 Switched to branch 'speedup_get_intersection'

 List::Compare::Functional version: 0.39000
 timethis 1000: 1 wallclock secs (1.32 usr + 0.00 sys = 1.32 CPU) @
757.58/s (n=1000)

Inspecting the above we see that in List::Compare::Functional version 0.38,

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 11	

"get_intersection()" ran at 746 times per second. By eliminating one
unnecessary hash-to-hash assignment, the performance improved to 757 times
per second. Not much, but that was just the first step. I performed
several other refactorings -- and eventually was able to eliminate that
internal function "_calculate_hash_intersection()" entirely. By
List::Compare::Functional version 0.50, "get_intersection()" was able to run
the same arguments approximately 950 times per second. So the refactoring
sped the function up.

Recording Progress

The actual performance improvements were gratifying. But what I really
want to emphasize today is how rapidly this simple developer's tool gave me
feedback on my refactorings. Once a given set of refactorings were stored
in a git version, I could rapidly switch back and forth between git versions
for both testing and benchmarking.

As I worked my way through List-Compare's various interfaces and functions,
I used compare-git-versions to benchmark refactorings on each function in
term. I took note of the benchmark results and placed edited versions of
the output in my git commit messages.

 commit 01581e8ea48c1ce23648386850475d88e4c9f4b0
 Author: James E Keenan <jkeenan@cpan.org>
 Date: Sun Feb 8 20:24:04 2015 -0500

 Revise List::Compare::Functional::_intersection_engine().

 Considerable performance improvement.

 LCF version: 0.39000

 I. 5 lists of strings, each small
 timethis 100000: 8 wallclock secs (7.33 usr + 0.00 sys = 7.33 CPU) @
13642.56/s (n=100000)

 II. 5 lists of strings, each small, plus 1 large list
 timethis 50: 26 wallclock secs (26.49 usr + 0.00 sys = 26.49 CPU) @
1.89/s
 (n=50)

 LCF version: 0.41000

A Development Tool for Improving Library Code YAPC::NA::2015
	

	
 12	

 I. 5 lists of strings, each small
 timethis 100000: 2 wallclock secs (1.89 usr + 0.00 sys = 1.89 CPU) @
52910.05/s (n=100000)

 II. 5 lists of strings, each small, plus 1 large list
 timethis 50: 7 wallclock secs (6.63 usr + 0.00 sys = 6.63 CPU) @
7.54/s
 (n=50)

This lets me easily review speed improvements by reviewing the git log.

 $> git log --format=fuller --reverse v0.38..HEAD

I've placed compare-git-versions on github
<https://github.com/jkeenan/compare-git-versions>. It's not polished, nor
do I expect to polish it into a definitive version. I want you to play with
it, adapt it to your individual needs, then submit patches or pull requests
so that collectively we polish it.

It's a developer's tool that will help you in the following situation: You
have well tested library code, kept under version control, whose performance
you wish to improve.

Thank you very much.

