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Bonus Slides 

Identically Repeated Code 
 It‘s usually easy to spot code which appears identically in more than one place. 

 It probably got that way because you copied-and-pasted it. 

 So placing that code in a subroutine is not difficult. 

Similar ... But Not Repeated Exactly 
 But I‘ve often found that I had to modify a section of code to get it to work properly in a new situation.

 How the shared aspects of the original and modified sections can be extracted and placed in a
subroutine is not necessarily self-evident. 

 Sometimes, you just have to stare at the code for a couple of months! 

Mall::Tally:  A Pseudo Spreadsheet 
Another project from my day job. 
A package named Mall::Tally takes data on the occurrence or non-occurrence of therapeutic groups in a
psychiatric treatment program and displays them in spreadsheet-like text files. 
     8   12    9   75   12    7   58   24   16   66 
     9    7    6   85    8    2   25   15    8   53 
    10   16   10   62   17    7   41   33   17   51 
    11   12    8   66   13    5   38   25   13   52 
    12   14   10   71   10    0    0   24   10   41 
    14   13    8   61   10    6   60   23   14   60 
         ... [other rows snipped] ... 
    98    0    0    0    1    1  100    1    1  100 
         89   59   66   84   36   42  173   95   54 

Column 1:  Numerical code for ward or department. 
Columns 2-4, 5-7:  For each week: groups scheduled; groups which actually took place; percentage which
took place. 
Columns 8-10:  For all weeks:  total scheduled, occurred, percentage. 
Bottom Row:  Total scheduled/occurred/percentage across departments. 

Code for Tallying Individual Groups 
 Each treatment group has a unique ID ($_ below). 

 Each group meets weekly unless excused.  A group either occurs or fails to occur. 

 Tallying is done in multi-week periods (typically, a month). 

  foreach my $period (@overall) { 
    my %week = %{$period}; 
    foreach (keys %week) { 
      my ($sch, $occ, $percent); 
      $sch =     defined ($week{$_}{’sched’}) ? $week{$_}{’sched’} : 0; 
      $occ =     defined ($week{$_}{’occur’}) ? $week{$_}{’occur’} : 0; 
      $percent = $sch                         ? $occ / $sch * 100  : 0; 

 This is part of the code to compute each row in the preceding slide. 

 Note the data structure:  an array (@overall) of hashes (%{$period}) of hashes
(%{$week{$_}}).  Note also the 3 uses of the ternary operator. 
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Code for Tallying the Bottom Line 
The code for tallying the bottom line (totals across departments) was similar, but not identical, to the code
for tallying individual groups. 
  foreach my $period (@overall) { 
      my %week = %{$period}; 
      my ($sch, $occ, $percent); 
      $sch =     defined ($week{’sched’}) ? $week{’sched’}    : 0; 
      $occ =     defined ($week{’occur’}) ? $week{’occur’}    : 0; 
      $percent = $sch                     ? $occ / $sch * 100 : 0; 

Note the data structure:  an array (@overall) of hashes (%{$period}) — one level shallower than the
preceding.  But we still use the ternary operator three times. 

A Challenge 
 These two passages of code occurred within the top and bottom parts of same subroutine. 

 The sub was working; I was prepared to live with the repetitious code. 

 But then I had to create a new subroutine which significantly altered other parts of the first subroutine
but kept these parts the same. 

 I faced the prospect of having four very similar blocks of code, rather than just two. 

 I didn‘t want to be stymied by the difference between: 
    $week{$_}{’scheduled’} 

and 
    $week{’scheduled’} 

After Staring at This for Several Months ... 
I decided to focus just on the data for just one group for just one week: %{$week{$_}}.  Its value is a hash
which may have keys titled ‘scheduled’, ‘occurred’, and/or ‘excused’. 
I pass a reference to that hash‘s value to a subroutine.     
  sub _calculate_group_week { 
    my $v = shift; 
    my %group_week = %{$v}; 
    my ($sch, $occ, $percent); 
    $sch     = defined ($group_week{’sched’}) ? $group_week{’sched’} : 0; 
    $occ     = defined ($group_week{’occur’}) ? $group_week{’occur’} : 0; 
    $percent = $sch                           ? $occ / $sch * 100    : 0; 
    return ($sch, $occ, $percent); 
  } 

The top part of the original subroutine now looked like this: 
  foreach my $period (@overall) { 
    my %week = %{$period}; 
    foreach (keys %week) { 
      my ($sch, $occ, $percent) = _calculate_group_week(\%{$week{$_}}); 

For Each Top There Must Be a Bottom ... 
I then revised the code passage for the bottom line in a similar manner: 
  sub _calculate_all_groups_week { 
    my $v = shift; 
    my %all_group_wk = %{$v}; 
    my ($sch, $occ, $percent); 
    $sch     = defined ($all_group_wk{’sched’}) ? $all_group_wk{’sched’} : 0; 
    $occ     = defined ($all_group_wk{’occur’}) ? $all_group_wk{’occur’} : 0; 
    $percent = $sch                             ? $occ / $sch * 100      : 0; 
    return ($sch, $occ, $percent); 
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  } 

The bottom part of the original subroutine now looked like this: 
  foreach my $period (@overall) { 
    my ($sch, $occ, $percent) = _calculate_all_groups_week(\%{$period}); 

Eliminating Redundant Variables ... a Surprise! 
Several of my variables were present only to enable me to penetrate the line noise endemic to Perl‘s
multi-dimensional data structures. 

my %week           = %{$period}; 
my %group_week     = %{$v}; 
my %all_group_week = %{$v}; 

Once I decided to eliminate these synthetic variables and put up with some line noise, I discovered that my
two new subroutines were identical! 

One Subroutine Replaces Two 

  sub _calculate_row { 
    my $v = shift; 
    my $sch     = defined (${$v}{’sched’}) ? ${$v}{’sched’}    : 0; 
    my $occ     = defined (${$v}{’occur’}) ? ${$v}{’occur’}    : 0; 
    my $percent = $sch                     ? $occ / $sch * 100 : 0; 
    return ($sch, $occ, $percent); 
  } 

It‘s the argument which I pass to the subroutine that makes the difference. 
  foreach my $period (@overall) { 
    foreach (keys %{$period}) { 
      my ($sch, $occ, $percent) = _calculate_row( \%{ ${$period}{$_} } ); 

versus 
  foreach my $period (@overall) { 
      my ($sch, $occ, $percent) = _calculate_row( \%{$period} ); 

Have Someone Else Stare at Your Code 
 Two months after writing the above code — and after I had spent a couple of weeks preparing this talk

— I showed this code to a Perl expert who noted that in both instances of _calculate_row() I
was dereferencing, and then taking a reference to, something that was already a hash reference. 

 Top part before and after: 
        _calculate_row( \%{ ${$period}{$_} } ); 

        _calculate_row( ${$period}{$_} ); 

 Bottom part before and after: 
        _calculate_row( \%{$period} ); 

        _calculate_row( $period ); 

 Whose eagle eyes spotted this repeated code?  Who else:  Mark Jason Dominus. 
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