
A TASTE OF TAXONOMIES

Today we’re going to talk about:

• The data structure known as a "taxonomy"
• How taxonomies are represented in CSV files
• How taxonomies are stored in relational databases
• How to validate taxonomies before we store them

The Problem

Let’s start with a problem: As a software developer, you are presented with a
CSV file that looks like this:

$> cat automobiles_taxonomy.csv

path,audience_size,cpm,buyable
"|General Motors","","",0
"|General Motors|Chevrolet",1000000,0.80,1
"|General Motors|Chevrolet|Spark",100000,0.15,1
"|General Motors|Chevrolet|Sonic",150000,0.20,1
"|General Motors|Chevrolet|Cruze",250000,0.20,1
"|General Motors|Chevrolet|Malibu",200000,0.25,1
"|General Motors|Chevrolet|Impala",175000,0.30,1
"|General Motors|Cadillac",150000,1.00,1
"|General Motors|Cadillac|Coupe",150000,0.30,1
"|General Motors|Cadillac|Sedan",150000,0.35,1
"|General Motors|Cadillac|Crossover",150000,0.40,1
"|General Motors|Cadillac|Escalade",150000,0.50,1
"|Toyota","","",0
"|Toyota|Corolla",800000,0.60,1
"|Toyota|Camry",600000,0.70,1
"|Toyota|Prius",400000,0.80,1
"|Toyota|RAV4",300000,0.50,1

You are told that the first column in this CSV file -- path -- holds hierarchical
data about automobile manufacturers, their major car lines or brands and
individual models. This first column has its own pipe-delimited format:

"|manufacturer|brand|model"

Each auto manufacturer has a number of brands. Each brand, in turn, offers a
number of models.

You are instructed to process this CSV data and insert it into a relational
database table named autos.

1

id | parent_id | name | audience_size | cpm | is_actionable
----+-----------+----------------+---------------+------+---------------

1 | | General Motors | | | f
2 | | Toyota | | | f
3 | 1 | Chevrolet | 1000000 | 0.80 | t
4 | 1 | Cadillac | 150000 | 1.00 | t
5 | 2 | Corolla | 800000 | 0.60 | t
6 | 2 | Camry | 600000 | 0.70 | t
7 | 2 | Prius | 400000 | 0.80 | t
8 | 2 | RAV4 | 300000 | 0.50 | t
9 | 3 | Spark | 100000 | 0.15 | t

10 | 3 | Sonic | 150000 | 0.20 | t
11 | 3 | Cruze | 250000 | 0.20 | t
12 | 3 | Malibu | 200000 | 0.25 | t
13 | 3 | Impala | 175000 | 0.30 | t
14 | 4 | Coupe | 150000 | 0.30 | t
15 | 4 | Sedan | 150000 | 0.35 | t
16 | 4 | Crossover | 150000 | 0.40 | t
17 | 4 | Escalade | 150000 | 0.50 | t

In the autos table, however, the hierarchical nature of the data is not so self-
evident. In the autos table each row is uniquely identified by an id column.
The hierarchical nature of the data has to be described by a combination of
three columns -- id, parent_id and name.

The name column is the last part of the pipe-delimited string you see in the path
column of the incoming CSV file. The parent_id column is the id number of
the row in the database holding a name corresponding to the next-to-last part of
the pipe-delimited string you see in the path column. Let’s look at one row in
the incoming CSV file:

path,audience_size,cpm,buyable
...
"|General Motors|Chevrolet|Spark",100000,0.15,1

This record is assigned id 9 in the autos table and we populate that row’s name
column as Spark. We populate the parent_id column with the id for Chevrolet,
which is Spark’s parent.

id | parent_id | name | audience_size | cpm | is_actionable
----+-----------+----------------+---------------+------+---------------
...

9 | 3 | Spark | 100000 | 0.15 | t

We would repeat this process until we got to the "top-level" node for General
Motors.

id | parent_id | name | audience_size | cpm | is_actionable
----+-----------+----------------+---------------+------+---------------

2

1 | | General Motors | | | f
...

3 | 1 | Chevrolet | 1000000 | 0.80 | t
...

9 | 3 | Spark | 100000 | 0.15 | t

You face a problem, however: Is the data in the CSV file truly hierarchical
and, if it is, and if you get it into the database table, can you confirm that you
preserved its hierarchical nature in the new format? Can you actually get from
here to there?

To answer these questions, we first have to learn something about the data
structure known as a taxonomy.

What Is a Taxonomy?

Once again, here’s where we’re going. I will:

• Give you an introduction to taxonomies;
• Show you how taxonomies can be represented in plain-text CSV files; and
• Present some interesting use cases, including transforming one kind of

taxonomy into another.

In this presentation I will define a taxonomy as a tree-like data structure (such
as that shown in Diagram 1) with a root node, zero or more branch (child) nodes,
and one or more leaf nodes.

Diagram 1:

Root
|

--
| | | |

Branch Branch Branch Leaf
| | |

------------------------- ------------ |
| | | | |

Branch Branch Leaf Leaf Branch

Leaf Leaf Leaf Leaf

The root node and each branch node must have at least one child node, but leaf
nodes have no child nodes. The number of branches between a leaf node and
the root node is variable.

Let’s make this structure a bit more human-friendly by giving names to the
various nodes.

3

Diagram 2:

""
|

--
| | | |

Alpha Beta Gamma Delta
| | |

------------------------- ------------ |
| | | | |

Epsilon Zeta Eta Theta Iota

Kappa Lambda Mu Nu

We can leave the root node unnamed for now. (You can think of that as "Mother
Nature", "the Divinity" or "the Unnameable.")

Looking at Diagram 2, you might well ask, "Do the nodes in the taxonomy have
to have unique names?" The answer is: No, they don’t -- with one exception!
No two nodes which are children of the same parent can have the same name --
but it is okay for nodes which are children of different parents to be named the
same. So Diagram 3 shows a legitimate taxonomy because the two nodes named
"Delta" have different parents.

Diagram 3: (valid)

""
|

--
| | | |

Alpha Beta Gamma Delta
| | |

------------------------- ------------ |
| | | | |

Epsilon Zeta Eta Theta Iota

Kappa Lambda Mu Delta

But Diagram 4 is not a legitimate taxonomy because two children of the root
node both are named "Delta."

Diagram 4: (invalid)

""
|

--

4

| | | |
Alpha Beta Delta Delta <-- invalid

| | |
------------------------- ------------ |
| | | | |

Epsilon Zeta Eta Theta Iota

Kappa Lambda Mu Nu

A taxonomy may or may not represent some intrisic hierarchical structure within
a data set. What’s more important is that a taxonomy be useful in organizing
human thinking about a data set. The most famous taxonomies are the those
associated with Linnaeus and his description of the Plant and Animal Kingdoms.
(https://en.wikipedia.org/wiki/File:Carl_von_Linn%C3%A9.jpg)

Here is how Charles Darwin depicted the hierarchical nature of the Tree of
Life. (https://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/On_
the_Origin_of_Species_diagram.PNG/616px-On_the_Origin_of_Species_
diagram.PNG)

And here is how the Tree of Life is depicted in a modern language. (https:
//commons.wikimedia.org/wiki/File%3AElu_puu.jpg)

Today the Tree of Life may not be considered the most scientifically accurate
depiction of nature, but it certainly has been useful over the centuries in helping
human beings think about nature.

There are, however, other useful ways to structure our thinking about data
sets. The taxonomy is good at showing hierarchical relationships among nodes
in a data set, but it’s not very good at showing the properties or attributes
of individual nodes. For that we’re more likely to turn to a two-dimensional,
matrix-like structure in which each row represents the properties of an individual
node, while each column holds the value of a particular property across all nodes.
We see this in spreadsheets, in relational database tables and, should we choose
to work in the plain-text world, in CSV files.

Can We Represent Hierarchically Structured Data in Row-
Column Format?

Materialized Path

Suppose we have a set of demographic data with thse four properties:

nationality,gender,age,income

5

https://en.wikipedia.org/wiki/File:Carl_von_Linn%C3%A9.jpg
https://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/On_the_Origin_of_Species_diagram.PNG/616px-On_the_Origin_of_Species_diagram.PNG
https://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/On_the_Origin_of_Species_diagram.PNG/616px-On_the_Origin_of_Species_diagram.PNG
https://upload.wikimedia.org/wikipedia/commons/thumb/7/7b/On_the_Origin_of_Species_diagram.PNG/616px-On_the_Origin_of_Species_diagram.PNG
https://commons.wikimedia.org/wiki/File%3AElu_puu.jpg
https://commons.wikimedia.org/wiki/File%3AElu_puu.jpg

With only these four columns, the data is not very useful. We don’t have a way
to uniquely identify a given record or look up its properties. But if the data set
meets the requirements for a taxonomy we are on the road to success -- and, as
we shall see, there are at least two such roads to success.

Let’s go back to Diagram 3: the taxonomy where one node shared the same
name with a node with a different parent:

Diagram 3: (redux)

""
|

--
| | | |

Alpha Beta Gamma Delta
| | |

------------------------- ------------ |
| | | | |

Epsilon Zeta Eta Theta Iota

Kappa Lambda Mu Delta

Let’s assume that each node in this tree has a value for the four demographic
properties mentioned above. Our first pass at representing this tree in CSV
format might look like this:

Diagram 5:

"name","nationality","gender","age","income"
"Alpha","","","",""
"Epsilon","","","",""
"Kappa","","","",""
"Zeta","","","",""
"Lambda","","","",""
"Mu","","","",""
"Beta","","","",""
"Eta","","","",""
"Theta","","","",""
"Gamma","","","",""
"Iota","","","",""
"Delta","","","",""
"Delta","","","",""

We simply create a column called name and populate it with the name of the
node in the tree. But this is obviously insufficient: All sense of the hierarchical
structure is lost; and two nodes share the same name, precluding the name
column from being used to uniquely identify each record.

6

But, what if instead of a name column we created a path column which we
populated, not just with the node’s name, but with the names of each of the
node’s ancestors? In other words, suppose the path column held the complete
route from the root node to any given node. We could do this if we separated
each of the ancestor nodes with a delimiter different from that used in the CSV
data itself. For example, if we used a pipe (|) delimiter inside the path column,
our data would look like this:

Diagram 6: Taxonomy by Materialized Path

"path","nationality","gender","age","income"
"|Alpha","","","",""
"|Alpha|Epsilon","","","",""
"|Alpha|Epsilon|Kappa","","","",""
"|Alpha|Zeta","","","",""
"|Alpha|Zeta|Lambda","","","",""
"|Alpha|Zeta|Mu","","","",""
"|Beta","","","",""
"|Beta|Eta","","","",""
"|Beta|Theta","","","",""
"|Gamma","","","",""
"|Gamma|Iota","","","",""
"|Gamma|Iota|Delta","","","",""
"|Delta","","","",""

The path column is now an instance of what is often referred to as a mate-
rialized path, so I will refer to this type of CSV data as a taxonomy by
materialized path.

Note that every node in the hierarchy (except the root node, which can often be
treated as optional) has its own CSV record. Note further that the materialized
path uniquely identifies each record and describes each record’s position in the
taxonomy.

Adjacent List

There are, however, other ways to represent a taxonomy in CSV format besides
materialized path. Suppose we were to start from our last diagram and issue
each record a serial number -- a unique, numerical ID issued in sequence.

Diagram 7:

id,"path","nationality","gender","age","income"
1,"|Alpha","","","",""
2,"|Alpha|Epsilon","","","",""
3,"|Alpha|Epsilon|Kappa","","","",""
4,"|Alpha|Zeta","","","",""
5,"|Alpha|Zeta|Lambda","","","",""

7

6,"|Alpha|Zeta|Mu","","","",""
7,"|Beta","","","",""
8,"|Beta|Eta","","","",""
9,"|Beta|Theta","","","",""
10,"|Gamma","","","",""
11,"|Gamma|Iota","","","",""
12,"|Gamma|Iota|Delta","","","",""
13,"|Delta","","","",""

Note that we now have two columns in this CSV file each of which uniquely
identifies each record.

Next, suppose that we provide each record with a parent_id value, i.e., the
value of the id field for the record’s parent node in the hierarchy. Our taxonomy
would then look like this:

Diagram 8:

id,parent_id,"path","nationality","gender","age","income"
1,,"|Alpha","","","",""
2,1,"|Alpha|Epsilon","","","",""
3,2,"|Alpha|Epsilon|Kappa","","","",""
4,1,"|Alpha|Zeta","","","",""
5,4,"|Alpha|Zeta|Lambda","","","",""
6,4,"|Alpha|Zeta|Mu","","","",""
7,,"|Beta","","","",""
8,7,"|Beta|Eta","","","",""
9,7,"|Beta|Theta","","","",""
10,,"|Gamma","","","",""
11,10,"|Gamma|Iota","","","",""
12,11,"|Gamma|Iota|Delta","","","",""
13,,"|Delta","","","",""

Records 1, 7, 10 and 13 have a null value for parent_id because their parent is
the root node (which we continue to ignore for the time being). Records 2 and
4 have a parent_id value of 1 because Epsilon and Zeta are the children of
Alpha and so forth.

But there’s one more refinement we need to make. We no longer need all the
data in the path column. We can look up each node’s parent by checking the
value of its parent_id column; look up that node’s parent by checking the value
of its parent_id column; and so on until we get to the top-level node. We can
revert to having a name column which holds only the name of an individual node.
Our CSV data now looks like this:

Diagram 9:

id,parent_id,"name","nationality","gender","age","income"
1,,"Alpha","","","",""
2,1,"Epsilon","","","",""

8

3,2,"Kappa","","","",""
4,1,"Zeta","","","",""
5,4,"Lambda","","","",""
6,4,"Mu","","","",""
7,,"Beta","","","",""
8,7,"Eta","","","",""
9,7,"Theta","","","",""
10,,"Gamma","","","",""
11,10,"Iota","","","",""
12,11,"Delta","","","",""
13,,"Delta","","","",""

We no longer have to worry about records at different levels of the hierarchy
sharing the same name because the uniqueness of each record is guaranteed by
the id column -- not by the name column or by a path column. And we no
longer need the path column to hold a delimited string representation of the
route from the node back to the root node; we can follow the chain of ids and
parent_ids to achieve the same end.

A fancier way of asking "Where is this node in the hierarchy?" is to ask "What
node is this node adjacent to?" The term adjacent list is often used to describe
this kind of data structure. So we’ll describe this kind of taxonomy where you
use ids and parent_ids to uniquely identify a node and to describe its location
in the tree as a taxonomy by adjacent list. Note that the same underlying
data structure could be represented by either a taxonomy-by-materialized-path
or a taxonomy-by-adjacent-list and that we have, in effect, transformed the
former into the latter.

Why Should We Care about Taxonomies?

At this point in this presentation, you are probably asking yourself two questions:

1. What’s the practical use of this stuff?
2. Where’s the Perl?

Let’s look at some use-cases first. I’ll construct these use cases from the digital
marketing industry (because that’s where I’m currently employed), but I’m sure
you’ll be able to think of other cases as well.

Digital marketing is basically worthless unless it’s targeted to particular potential
customers. A sub-industry of audience vendors has arisen whose members
claim to be able to deliver particular groups of potential customers to advertisers
willing to pay a fee for that service. Advertising technology companies
need to be able to get data from audience vendors, store it internally and enable
their customers -- advertising agencies and advertising brands -- to use that data
in making decisions about purchasing digital advertising placements.

9

Let’s suppose that a particular audience vendor specializes in automobiles and
can provide audiences based on manufacturer, brand and model. Let’s suppose
further that that vendor supplies its data to ad tech companies in a CSV file
said to hold a taxonomy by materialized path. That file might look like this:

Diagram 10:

$> cat automobiles_taxonomy.csv

path,audience_size,cpm,buyable
"|General Motors","","",0
"|General Motors|Chevrolet",1000000,0.80,1
"|General Motors|Chevrolet|Spark",100000,0.15,1
"|General Motors|Chevrolet|Sonic",150000,0.20,1
"|General Motors|Chevrolet|Cruze",250000,0.20,1
"|General Motors|Chevrolet|Malibu",200000,0.25,1
"|General Motors|Chevrolet|Impala",175000,0.30,1
"|General Motors|Cadillac",150000,1.00,1
"|General Motors|Cadillac|Coupe",150000,0.30,1
"|General Motors|Cadillac|Sedan",150000,0.35,1
"|General Motors|Cadillac|Crossover",150000,0.40,1
"|General Motors|Cadillac|Escalade",150000,0.50,1
"|Toyota","","",0
"|Toyota|Corolla",800000,0.60,1
"|Toyota|Camry",600000,0.70,1
"|Toyota|Prius",400000,0.80,1
"|Toyota|RAV4",300000,0.50,1

Problem: Is the taxonomy valid?

Let’s say that you’re a product manager or an engineer in an ad tech company
and an audience vendor has provided you with the CSV data above. Before
you go inserting this data into your database and permitting your customers to
make purchasing decisions based on this data, you should ask: "Is this a valid
taxonomy? Can I rule out obvious defects in the data?"

Two potential defects come to mind.

1 Missing branch node Suppose the GM data in the taxonomy above
jumped directly from the |General Motors node to the |General
Motors|Chevrolet|Spark node without the intermediate branch node
|General Motors|Chevrolet.

"|General Motors","","",0
"|General Motors|Chevrolet|Spark",100000,0.15,1

This would violate the rule that every node in the hierarchy be represented
by a unique record in the taxonomy. Hence, the taxonomy would be invalid.

10

2 Two nodes, children of same parent, with same name Suppose in the
Chevrolet data there were two nodes with the same brand name.

"|General Motors|Chevrolet|Sonic",100000,0.15,1
"|General Motors|Chevrolet|Sonic",150000,0.20,1

Two children of the same parent node are sharing the same name. This
would invalidate the taxonomy because the materialized path would no
longer be able to uniquely identify each record.

Solution: Parse::Taxonomy

I have written a Perl library called Parse-Taxonomy which you can find
on CPAN which provides basic functionality for handling taxonomies
with data in CSV format. The library contains two principal subclasses:
Parse::Taxonomy::MaterializedPath and Parse::Taxonomy::AdjacentList
to handle the two kinds of taxonomies discussed in today’s presentation. The
library also contains a cookbook with recipes for common problems in
dealing with taxonomies. Consulting that cookbook, we find that we can
validate a taxonomy-by-materialized-path by simply trying to create a
Parse::Taxonomy::MaterializedPath object.

$obj = Parse::Taxonomy::MaterializedPath->new({
file => 'automobiles_taxonomy.csv',

});
ok(defined $obj, "$taxonomy_file passes basic validations");

Once we have a valid taxonomy, we can play with it by calling methods on the
object. For example, we can turn it into a hash:

my $hashified = $obj->hashify();

{
"|General Motors" => {

audience_size => "",
buyable => 0,
cpm => "",
path => "|General Motors"

},
"|General Motors|Cadillac" => {

audience_size => 150000,
buyable => 1,
cpm => "1.00",
path => "|General Motors|Cadillac",

},
...
"|Toyota" => {

11

http://search.cpan.org/dist/Parse-Taxonomy/

audience_size => "",
buyable => 0,
cpm => "",
path => "|Toyota"

},
"|Toyota|Camry" => {

audience_size => 600000,
buyablB => 1,
cpm => "0.70",
path => "|Toyota|Camry",

},
...

}

We can also take the data in the object and structure them as a taxonomy-by-
adjacent-list, which we then write out to a CSV file.

my $adjacentified = $obj->adjacentify();

my $csv_out = "$cwd/examples/data/auto_adjacent.csv";

$obj->write_adjacentified_to_csv({
adjacentified => $adjacentified,
csvfile => $csv_out,

});

$> cat examples/data/auto_adjacent.csv

id,parent_id,name,audience_size,cpm,buyable
1,,"General Motors",,,0
2,,Toyota,,,0
3,1,Chevrolet,1000000,0.80,1
4,1,Cadillac,150000,1.00,1
5,2,Corolla,800000,0.60,1
6,2,Camry,600000,0.70,1
7,2,Prius,400000,0.80,1
8,2,RAV4,300000,0.50,1
9,3,Spark,100000,0.15,1
10,3,Sonic,150000,0.20,1
11,3,Cruze,250000,0.20,1
12,3,Malibu,200000,0.25,1
13,3,Impala,175000,0.30,1
14,4,Coupe,150000,0.30,1
15,4,Sedan,150000,0.35,1
16,4,Crossover,150000,0.40,1
17,4,Escalade,150000,0.50,1

12

We could next take this CSV file and use it as input for another module within
the Parse-Taxonomy distribution, Parse::Taxonomy::AdjacentList. As was
the case with Parse::Taxonomy::MaterializedPath, if we can successfully
create a Parse::Taxonomy::AdjacentList object with a given input, we have
confirmed that the data has a taxonomically valid structure.

my $alobj = Parse::Taxonomy::AdjacentList->new({
file => $csv_out,

});
ok(defined($alobj), "Taxonomically valid adjacent list");

We can even turn this taxonomy-by-adjacent-list back into a taxonomy-by-
materialized-path by calling a pathify() method on this object.

my $pathified = $alobj->pathify();

And, with a little work not shown here, we can write tests that demon-
strate that the data structure in the Parse::Taxonomy::AdjacentList
object is exactly the same as the data structure we first created in the
Parse::Taxonomy::MaterializedPath object.

Summary

In today’s presentation we’ve:

• Met the tree-like data structure known as a taxonomy;
• Seen how taxonomies can be represented in a two-dimensional, row-column

matrix format such as a CSV file; and
• Examined how CPAN library Parse-Taxonomy can be used to validate

a data structure as a taxonomy and to transform one common form of
taxonomy into another.

There are a variety of other CPAN libraries which deal with hierarchically
structured data, particularly in the DBIx::Class namespace. I encourage you to
check them all out.

Thank you very much.

13

	A TASTE OF TAXONOMIES
	The Problem
	What Is a Taxonomy?
	Can We Represent Hierarchically Structured Data in Row-Column Format?
	Materialized Path
	Adjacent List

	Why Should We Care about Taxonomies?
	Problem: Is the taxonomy valid?
	Solution: Parse::Taxonomy

	Summary

